

Progressive Education Society's Modern College of Arts, Science & Commerce (Autonomous) Ganeshkhind, Pune – 411016

NATIONAL EDUCATION POLICY - 2020 (NEP-2020)

Basic and Honors Degree Program in

Bachelor of Computer Applications (Science): B.C.A. (Science)

(Faculty of Science & Technology)

Syllabus for T.Y. B.C.A. (Science) 5th and 6th Semesters

To be implemented from Academic Year 2025-2026

Title of the Course: Bachelor of Computer Applications (Science)

Preamble of the syllabus

The B.C.A. (Science) program is a combination of computer and applied courses from science stream. The computer related courses introduce techniques of programming, databases, web designing, system analysis, design tools and different computing environments. The applied courses include mathematics, statistics and electronics that provide theoretical and practical foundation for the learner.

Objectives

- To produce knowledgeable and skilled human resources that is employable in IT.
- To impart knowledge required for planning, designing and building Complex Application Software Systems as well as to provide support for automated systems or applications.
- It helps students analyze the requirements for system development and exposes students to business software and information systems.
- This course provides students with options to specialize in legacy application software, system software or mobile applications.
- To produce entrepreneurs

Introduction

The Structure of three or four Year bachelor's degree programme allows the opportunity to the students to experience the full range of holistic and multidisciplinary education in addition to a focus on the chosen major and minor as per their choices and feasibility of exploring learning in different institutions.

This Undergraduate Degree Program has been designed with a semester approach in mind. The First-year courses are aimed at skills development in computers using various technologies while the second year is more focused on core courses providing conceptual frame work. The third year provides the specialization and the project work and fourth year focused on initiate research binge at start-ups level.

Students will be awarded certificate in computer application after one-year completion, diploma in computer application after two years of completion, get B.C.A. degree after three years' completion and B.C.A. (honors) degree after completion of four years. A four-year degree (Eight - semesters) in Computer Applications will get skills and information not only

about Computer and Information Technology but also in communication, organization, research and management with multidisciplinary approach.

Eligibility for Admission:

Any candidate who has passed the XII standard Examination in Science stream from, Maharashtra State Board of Secondary and Higher Secondary Education or equivalent Board of Examination, is eligible for admission to the First Year of this program.

Semester -V T.Y. B.C.A (Science)							
Course Code	Course	Course Course Title Credits		edits	Evaluation		
Course Coue	Type	Course Title	TH	PR	CIA	CSE	Total
BCA35101	Major	Operating System	4	-	40	60	100
BCA35102	Major	Advanced Java	2	-	20	30	50
BCA35103	Major	Operating System Laboratory	-	2	20	30	50
BCA35104	Major	Advanced Java Laboratory	-	2	20	30	50
BCA35105	Elective	React JS	2	-	20	30	50
BCA35106	Elective	React JS Laboratory	-	2	20	30	50
OR (Choose any	one Elective [[T+P]					
BCA35107 Elective	Object Oriented Software	2	_	20	30	50	
BCA33107 Elective		Engineering	2		20	30	30
BCA35108	Elective	Object Oriented Software	_	2	20	30	50
Ben33100	Licetive	Engineering Laboratory		2	20	30	30
BCA35210	Minor	Data mining	2	-	20	30	50
BCA35211	Minor	Lab on Data Mining	-	2	20	30	50
BCA35409 VSC		Internet of Things (IoT)	_	2	20	30	50
BUNGGTO	150	Laboratory			20	30	
BCA35613	FP	Field Project	-	2	20	30	50
Total	,		10	12	220	330	550

Total Credits: [10 (TH) + 12 (PR)] = 22

TH: Theory PR: Practical CIA: Continuous Internal Assessment CSE: College Semester Examination

Semester -VI T.Y. B.C.A (Science)							
Course Code	Course	e Course Title Credits		edits	Evaluation		
Course Coue	Type	Course Title	TH	PR	CIA	CSE	Total
BCA36101	Major	Android Programming	4	-	40	60	100
BCA36102	Major	Advanced Web Technology	2	-	20	30	50
BCA36103	Major	Android Programming Laboratory	-	2	20	30	50
BCA36104	Major	Advanced Web Technology Laboratory	-	2	20	30	50
BCA36105	Elective	Node JS	2	-	20	30	50
BCA36106	Elective	Node JS Laboratory	-	2	20	30	50
OR (Choose any one Elective [T+P])							
BCA36107	Elective	Software Testing	2	-	20	30	50
BCA36108	Elective	Software Testing Laboratory	-	2	20	30	50
OR (Choose any one Elective [T + P])							
BCA36109	Elective	Cloud Computing	2	-	20	30	50
BCA36110	Elective	Cloud Computing Laboratory	-	2	20	30	50
BCA36211	Minor	Machine Learning	2	-	20	30	50
BCA36212	Minor	Machine Learning Laboratory	-	2	20	30	50
BCA36613	OJT	OJT	-	4	40	60	100
Total 10 12 220 330 550				550			

Total Credits: [10 (TH) + 12 (PR)] = 22

TH: Theory PR: Practical CIA: Continuous Internal Assessment CSE: College Semester Examination

T.Y. B.C.A. SEMESTER V		
Subject Code:BCA35101	Subject Name: Operating System	
Credits: 04	Continuous Internal Assessment: 40 Marks	
Theory: 04 Hrs./Week	College Semester Examination: 60 Marks	

- To study algorithms for CPU-scheduling, Process Creation and Termination.
- To understand the notion of a Multithreading and Inter-Process Communication.
- To learn Critical-Section problems and Classical Process-Synchronization problems.
- To know the Deadlock Concept, different methods for Preventing or Avoiding Deadlocks and techniques for Memory Management.
- To learn and understand File System, Directory Structure, File Allocation Methods and Disk Scheduling Algorithms.

Course Outcomes:

- Describe algorithms for Process, Memory and Disk Scheduling
- Apply technique for Inter-Process Communication and Multithreading.
- Implement concept of Critical-Section
- Compare and contrast Deadlock Avoidance and Prevention.
- Use functions for File System Management

Course Contents	
Unit I Process Scheduling and Multithreaded Programming	14Hrs
Process Scheduling – Scheduling queues, Schedulers, Context switch, Operations	
on Process – Process creation with program using fork(), Process termination,	
Inter-process Communication – Shared memory system, Message passing	
systems, Multithreaded Programming – Overview Basic Concept – CPU-I/O	
burst cycle, CPU Scheduler, Pre-emptive Scheduling, Dispatcher, Scheduling	
Criteria, Scheduling Algorithms – FCFS, SJF, Priority scheduling, Round- robin	
scheduling, Thread Scheduling- Threads, benefits, Thread Libraries	
Unit II Process Synchronization	08 Hrs
Background, Critical Section Problem, Semaphores Classic Problems of	
Synchronization – The bounded buffer problem, the reader, writer problem, the	

dining philosopher problem.	
Unit III Deadlock	10 Hrs
System Model, Deadlock Characterization – Necessary Conditions, Resource	
Allocation Graph Deadlock Prevention, Deadlock Avoidance - Safe state,	
Resource-Allocation-Graph Algorithm, Banker's, Algorithm, Deadlock	
Detection, Recovery from Deadlock – Process Termination, Resource Pre-	
emption	
Unit IV Memory Management	12 Hrs
Background – Basic, Logical Versus Physical, Address Space, Dynamic	
Loading, Dynamic Linking and Shared Libraries, Overlays, Swapping,	
Contiguous Memory Allocation – Memory mapping and protection, Memory	
allocation, Fragmentation Paging - Basic Method, Hardware support,	
Protection, Shared Pages, Segmentation – Basic concept, Virtual Memory	
Management – Demand paging, Performance of demand paging, Page	
replacement – FIFO, Optimal, LRU	
Unit V File System	10 Hrs
File Concept, File Attribute, File Operations, File Types, File Structure, Access	
Methods - Sequential Access Method, Direct Access Method, Other Access,	
Methods, Directory overview, Single level directory, Two level directory, Tree	
structure directory, Acyclic graph directory, General graph directory, File	
System Structure and Implementation - Partitions and Mounting, Virtual, File	
Systems, Allocation Methods - Contiguous allocation, Linked allocation,	
Indexed allocation	
Unit VI Disk Scheduling	06 Hrs
System Model, Deadlock Characterization – Necessary Conditions, Resource	
Allocation Graph Overview, Disk Structure, Disk Scheduling, FCFS Scheduling,	
SSTF Scheduling	
Reference Books:	

- 1) Operating System Concepts, Avi Silberschatz, Peter Galvin, Greg Gagne, 8th Edition, Wiley Asia
- 2) Operating Systems: Internals and Design Principles, William Stallings, Prentice Hall of India

- 3) Modern Operating Systems 4th Edition, by Andrew Tanenbaum, Herbert Bos
- 4) Distributed Operating Systems Concepts and Design, Pradeep K. Sinha, PHI
- 5) Advanced Concepts in Operating Systems, Mukesh Singhal and Niranjan G Shivaratri, Tata McGraw Hill Inc, 2001

T.Y. B.C.A. SEMESTER V		
Subject Code:BCA35102	Subject Name: Advanced Java	
Credits: 02	Continuous Internal Assessment: 20 Marks	
Theory: 02 Hrs./Week	College Semester Examination: 30 Marks	

- To understand collection classes and interfaces.
- To know the process of application development using Graphical User Interface (GUI).
- To acquire knowledge about handling databases using Java.
- To study web components for developing web applications.

Course Outcomes:

- Design end to end applications using object oriented constructs.
- Apply collection classes for storing java objects.
- Use Java APIs for program development.
- Handle abnormal termination of a program using exception handling.

Course Contents	
Unit-I Collection	05 Hrs
Introducing to Collections framework, List - ArrayList, LinkedList, Set -	
HashSet, TreeSet, Map - HashMap and TreeMap, Interfaces such as Comparator,	
Iterator, ListIterator, Enumeration, Exception handling- try ,catch ,finally, throw	
and throws,Inputs Outputs.	
Unit-II Multithreading	05 Hrs
Threads and Life cycle of thread, Creating threads - Thread class , Runnable	
interface, Thread priorities, Running multiple threads, Synchronization and	
interthread communication, Thread Methods, Thread Scheduler,	
ThreadGroupclass	
Unit-III Database Programming	05 Hrs
The role of jdbc, jdbc configuration, Types of drivers, Connectivity with	
database, JDBC Statements – Statement, Prepared Statement, Callable Statement,	
Scrollable and updatable result sets, Metadata – DatabaseMetadata,	
ResultSetMetadata (Database: PostgreSQL)	

Unit-IV Servlets	05 Hrs
Servlets: Introduction to Servlets and Hierarchy of Servlets, Life cycle of a	
servlet, Tomcat configuration (Note: Only for Lab Demonstration), Handing get	
and post request (HTTP), Handling a data from HTML to a servlet, Session	
tracking – Cookies and Http Session	
Unit-V JSP	05 Hrs
JSP: Simple JSP program, Life cycle of a JSP, Implicit Objects, Scripting	
elements – Declarations, Expressions, Scriplets, Comments, JSP Directives –	
Page Directive, include directive, Mixing Scriplets and HTML	
Unit-VI Spring Framework	05 Hrs
Introduction of spring framework, Spring Modules / Architecture, Spring	
Applications, Spring MVC, Spring MVC Forms, Validation	

Reference Books:

- 1) Core Java Volume I Fundamentals By Cay S. Horstmann, 11th Edition, Prentice Hall, ISBN 978-0-13-516630-7
- 2) The Complete Reference By Herbert Shildt, 11th Edition, McGraw Hill Education, ISBN 978-260-44023-2
- 3) Java Beginners Guide By Herbert Shildt, 8th Edition, McGraw-Hill Education ISBN 978-1-260-44021-8
- 4) Core Java Volume II Fundamentals By Cay S. Horstmann, 11th Edition, Prentice Hall, ISBN 978-013-516631-4
- 5) Java 2 Programming Black Book By Steven Holzner, DreamTech Press, ISBN 978-93-5119-953-4

T.Y. B.C.A. SEMESTER V		
Subject Code: BCA35103	Subject Name: Operating System Laboratory	
Credits: 02	Continuous Internal Assessment: 20 Marks	
Practical: 04 Hrs./Week	College Semester Examination: 30 Marks	

- To study algorithms for CPU-scheduling, Process Creation and Termination.
- To study the process management and scheduling.
- To Study Memory Management.
- To study and understand searching techniques

Course Outcomes:

On completion of the course, student will be able to-

- Describe algorithms for Process, Memory and Disk Scheduling Implement algorithms for Process scheduling and Memory management.
- Describe process synchronization and multithreading
- Compare and contrast the algorithms for memory management and its allocation policies.
- Use searching algorithms, Design a simple Expert system
- Understand the informed and uninformed problem types and apply search strategies to solve them.

Lab Course Contents

Sr. No	Assignment
1	Operations on processes
2	CPU Scheduling
3	Deadlock detection and avoidance
4	Page Replacement Algorithms
5	File System
6	Disk Scheduling Algorithms

T.Y. B.C.A. SEMESTER V		
Subject Code: BCA35104	Subject Name: Advanced Java Laboratory	
Credits: 02	Continuous Internal Assessment: 20 Marks	
Practical: 04 Hrs./Week	College Semester Examination: 30 Marks	

- To understand collection classes and interfaces.
- To know the process of application development using Graphical User Interface (GUI).
- To acquire knowledge about handling databases using Java.
- To study web components for developing web applications.

Course Outcomes:

- Design end to end applications using object oriented constructs.
- Apply collection classes for storing java objects.
- Use Java APIs for program development.
- Handle abnormal termination of a program using exception handling.

Lab Course Contents		
Sr. No	Assignment	
1	Collection	
2	Multithreading	
3	Database Programming	
4	Servlet	
5	JSP	
6	Spring Framework	

T.Y. B.C.A. SEMESTER V			
Subject Code:BCA35105	Subject Name: React JS		
Credits: 02	Continuous Internal Assessment: 20 Marks		
Theory: 02 Hrs./Week	College Semester Examination: 30 Marks		

- To understand React.
- To know the process of application development using React Components.
- To acquire knowledge about Navigation and State management using React.
- To study web components for developing web applications using APIs.

Course Outcomes:

- Design end to end web pages using React.
- Apply collection of different components of React.
- Use APIs for program development.
- Handle Themes and Styles.

Course Contents		
Unit-I Introduction to React Native		
Overview of React and its benefits, Setting up a development environment, Understanding JSX syntax, Creating and rendering React components, Introduction to React hooks (useState, useEffect)		
Unit-II Core Components	05 Hrs	
Understanding the concept of components, Props and state management in React, Functional components vs. class components, Creating reusable components, Component lifecycle methods		
Unit-III Advanced Components	05 Hrs	
Event handling in React, Forms and controlled components, Handling user input with forms, Form validation techniques		
Unit-IV Navigation and State Management		
Introduction to React Router, Setting up routes in a React application, Creating nested routes, Implementing route parameters and query strings, Using NavLink and Redirect components		
Unit-V APIs and Data Storage		
Introduction to Redux and its principles, Setting up Redux in a React application, Actions, reducers, and the store, Connecting React components to Redux, Asynchronous actions with Redux Thunk		
Unit-VI Styling and Theming	05 Hrs	
Understanding React hooks in depth, useState, useEffect, useContext, and more Custom hooks and their usage, Best practices for using hooks		

T.Y. B.C.A. SEMESTER V		
Subject Code: BCA35106	Subject Name: React JS Laboratory	
Credits: 02	Continuous Internal Assessment: 20 Marks	
Practical: 04 Hrs./Week	College Semester Examination: 30 Marks	

- To understand React App.
- To know the process of application development using different React Components
- To acquire knowledge about handling Events using React.
- To study routers, redux, hooks for developing web applications.

Course Outcomes:

- Design end to end applications using React.
- Apply collection of React components.
- Use APIs for program development.
- Handle routers, redux, hooks.

Lab Course Contents			
Sr. No	Assignment		
1	Practical on creation of first react app and running		
2	Practical on use of core components and imports		
3	Creating forms and their events in react app		
4	Using routers in app		
5	Using redux in app		
6	Using hooks in app		

TI	V I	2 (1 A	CEL	MESTER	V
		J. C.	/• <i>F</i>			v

Subject Code: BCA35107 Subject Name: Object Oriented Software Engineering

Credits: 02 Continuous Internal Assessment: 20 Marks

Theory: 02 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

- To study fundamental concepts in software testing, including software testing objectives, process, criteria, strategies, and methods.
- To discuss various software testing issues and solutions in software unit test;
 integration, regression, and system testing.
- To learn how to planning a test project, design test cases and data, conduct testing operations, manage software problems and defects, generate a testing report.
- To expose the advanced software testing topics, such as object-oriented software testing methods, and component-based software testing issues, challenges, and solutions.
- To gain software testing experience by applying software testing knowledge and methods to practice-oriented software testing projects.

Course Outcomes:

- Have an ability to apply software testing knowledge and engineering methods.
- Have an ability to design and conduct a software test process for a software testing project.
- Have an ability to identify the needs of software test automation, and define and develop a test tool to support test automation.
- Have an ability understand and identify various software testing problems, and solve these problems by designing and selecting software test models, criteria, strategies, and methods.

Course Contents	
Unit - I: Introduction to Software Engineering	03 Hrs
Definition of Software , Characteristics of Software , Software Application Domain	
,Definition of Software Engineering , Program vs. Software, Need for software	
Engineering, Characteristics of software	

De v5	
Unit - II Object Oriented Software Engineering	03 Hrs
Introduction to object orientation- Classes and objects, Messages, Attributes and	
Methods, Encapsulation, Inheritance, Polymorphism, Object Oriented	
Methodology- Coad and Yourdon Methodology, Object Oriented Modeling	
Unit – III: Software Development Life Cycle (SDLC)	06 Hrs
Conventional Software Life Cycle Methods-Build-and-fix model, Waterfall	
Model, Prototyping Model, Iterative Enhancement Model, Spiral Model, Object	
Oriented Software Life Cycle Models, Fountain Model, Rational Unified Process	
Unit – IV: Software Requirement Elicitations and Analysis	06 Hrs
Software Requirement- Identification of Stakeholders, Functional and Non-	
functional requirements, Known and Unknown requirement, Requirements	
Elicitation Techniques- Interviews, Brainstorming Sessions, Facilitated	
Application Techniques, Prototyping, Software Requirements Specification	
(SRS) Documents- Nature of the SRS documents, Organization of the SRS	
Documents	
Unit – V: Analysis and Design Engineering	06 Hrs
Decision Tree and Decision Table , Data Flow Diagrams (DFD) , Data Dictionary ,	
Elements of DD ,Advantages of DD , Input and Output Design, PseudoCode, Case	
Studies on above topics	
Unit – VI: Software Testing Strategies and Techniques	06 Hrs
Software Quality, Software Testing, Testing Objectives, Principles of Testing,	
Verification and Validation, Testing Techniques, Strategic-Black and White,	
Approach for Software Testing, Unit Testing, Integration Testing, System	
Testing, Alpha and Beta Testing, Agile Testing	

T.Y. B.C.A. SEMESTER V

Subject Code: BCA35108

Subject Name: Object Oriented Software Engineering Laboratory

Credits: 02 Continuous Internal Assessment: 20 Marks
Practical: 04 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

 To have hands on experience in developing a software project by using various software engineering principles and methods in each of the phases of software development

Course Outcomes:

On completion of the course, student will be able to-

- Ability to translate end-user requirements into system and software requirements
- Ability to generate a high-level design of the system from the software requirements
- Will have experience and/or awareness of testing problems and will be able to develop a SRS report.

Guideline:

• Students have to do all assignments on the basis of mini project.

Sr. No Assignment Mini Project Module I Assignments on UML diagrams Assignments on Test Cases and Test Plan and Test Strategies Assignments of Test Methodologies Assignments on Defect Managements. Assignments on Automation Testing using Selenium.

Lab Course Contents

TI	\mathbf{R}	CA	CFL	IESTER	T/T
	L . D				- V I

Subject Code: BCA35409 Subject Name: Internet of Things(IoT) Laboratory

Credits: 02 Continuous Internal Assessment: 20 Marks
Theory: 04 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

- To understand basic building blocks of Internet of Things (IoT) and Embedded Systems hardware
- To know methodologies for IoT application development
- To implement the IoT protocols, cloud platforms in IoT
- To learn real world application scenarios of IoT along with its societal and economic impact

Course Outcomes:

- Identifying suitable hardware components of Embedded Systems and the Internet of Things
- Devlop software as per requirement of IoT application
- Select suitable communication protocols for communication among IoT devices
- Select suitable cloud-based IoT storage and comprehend security issues in IoT applications

Lab Course Contents			
Sr. No	Assignment		
1	To Study Raspberry Pi / Arduino Architecture and Basic Programming		
	Interfacing of LED/Buzzer/Push button with Arduino/Raspberry Pi. and		
2	write a program to turn ON LED when push button is pressed or at sensor		
2	detection and write a program to turn ON LED when push button is pressed		
	or at sensor detection		
3	Interfacing Raspberry-Pi/ Adriano with IR sensor/Camera sensor		
4	To interface DHT11 sensor with Arduino/Raspberry Pi and write a program		
-	to print temperature and humidity reading		
5	To interface Bluetooth with Arduino/Raspberry Pi and write a program to		
3	send sensor data to smartphone using Bluetooth		
6	Write a program on Arduino/Raspberry Pi to upload temperature and		
U	humidity data to thingspeak cloud		

T.Y. B.C.A. SEMESTER V		
Subject Code: BCA 35210	Subject Name: Data Mining	
Credits: 02	Continuous Internal Assessment: 20 Marks	
Theory: 02 Hrs./Week	College Semester Examination: 30 Marks	

- To introduce students to the basic concepts and techniques of Data Mining
- To study data mining algorithms for solving practical problems.
- To understand applications and trends in data mining

Course Outcomes:

- Define fundamental concepts of data mining.
- Demonstrates various preprocessing techniques.
- Implement various algorithms to analyze data sets.
- Understand requirements and methods for cluster analysis.
- Evaluate ethical considerations and emerging trends in data mining applications.

Course Contents	
Unit I Introduction to Data Mining	06 Hrs
Definition Data mining , Data Mining issues , Stages of the Data Mining	
Process (KDD), Data Mining Techniques/Tasks, Knowledge	
Representation Methods , Applications of Data mining.	
Unit II Data Pre-processing and Warehousing	06 Hrs
Data Pre-processing: Data Cleaning, Data Transformation, Data Reduction	
Data Discretization, Data Warehousing: Introduction, Architecture and its	
components, Data Modeling with OLAP: Introduction, Difference	
between OLTP and OLAP, Schema Design: star Schema	
Unit III Data Classification	06 Hrs
Introduction, Definition, Decision Tree: Introduction, Construction	
Principle , Attribute Selection Measures , Tree Pruning, Rule-Based	
Classification: Using IF-THEN Rules for Classification, Rule Extraction	
from a Decision Tree, Naïve Bayes Classifier, K-Nearest Neighbor (KNN)	
Unit IV Clustering	06 Hrs

Cluster Analysis: Introduction, Requirements for Cluster Analysis,	
Hierarchical Method: Agglomerative Hierarchical Clustering, Divisive	
Hierarchical Clustering, Partitioning Methods: k-Means A Centroid-Based	
Technique, k-Medoids A Representative Object-Based Technique.	
Unit V Association Rule Mining	05 Hrs
Introduction to Association Rule Mining , Market Basket Analysis, Items,	
Itemsets and Large Itemsets, Apriori Algorithm, Kinds of Association	
Rules , Mining Multilevel association rules, Constraint Based Association	
rules mining	
Unit 6: Applications and Trends in Data Mining	04 Hrs
Text Mining and Sentiment Analysis, Web Mining: Web Content,	
Structure, and Usage Mining, Data Mining for Social Media Analytics,	
Ethical Issues in Data Mining, Future Trends in Data Mining	

Reference Books:

Reference Books:

- 1)Data Mining: Introductory and Advanced Topics by Margaret Dunham, S. Sridhar, Pearson Publication
- 2) Data Mining concepts and Techniques by Jiawei Han and Micheline Kamber, ELSEVIER Third Edition,
- 3) R and Data Mining, By Yanchang Zhao, Elsevier Inc., ISBN-10: 0123969638
- 4) Data Science from Scratch: First Principles with Python By O"Reilly Media, 20153.
- 5) Making sense of Data: A practical Guide to Exploratory Data Analysis and Data Mining by Glenn J. Myatt John Wiley Publishers, 2007

T.Y. B.C.A. SEMESTER V		
Subject Code:BCA35211	Subject Name: Data Mining Laboratory	
Credits: 02	Continuous Internal Assessment: 20 Marks	
Practical: 04 Hrs./Week	College Semester Examination: 30 Marks	

 To provide hands-on experience with essential data mining techniques and tools, enabling students to extract meaningful patterns, perform predictive analysis, and implement advanced algorithms for data classification, clustering, association, and pre-processing.

Course Outcomes:

- Apply data preprocessing techniques to clean and prepare data for mining processes.
- Implement classification methods such as Naïve Bayes Classifier to solve realworld problems.
- Perform regression analysis and identify outliers for improved data insights.
- Utilize clustering techniques, including K-Means and hierarchical methods, to group data effectively.
- Generate association rules using the Apriori algorithm to discover relationships among data attributes.
- Explore various tools for executing various data mining tasks.

Lab Course Contents		
Sr. No	Assignments	
1	Data Preprocessing	
2	Classification Techniques: Naïve Bayes Classifier	
3	Regression Analysis and Outlier detection	
4	Clustering: K-Means, Hierarchical	
5	Association Rules: Perform ARM using Apriori Algorithm	
6	Introduction to WEKA (Case Study)	

- T 1		-	-	-	-
	E.P:	-21	125.	-21	176

T.Y. B.C.A. SEMESTER VI	
Subject Code: BCA36101	Subject Name: Android Programming
Credits: 04	Continuous Internal Assessment: 40 Marks
Theory: 04 Hrs./Week	College Semester Examination: 60 Marks

- To understand the Android Operating System
- To study Android Apps Development Cycle
- To learn to create Android Applications.

Course Outcomes:

- Describe the process of developing mobile applications.
- Create mobile applications on the Android Platform.
- Design and implement mobile applications involving data storage in SQLite database.
- Use location-based services while developing applications

Course Contents	
Unit I Introduction to Android	9 Hrs
Overview, History and Features of Android Architecture of Android:	
Overview of Stack, Linux Kernel, Native Libraries, Android Runtime,	
Application Framework, Applications SDK Overview: Platforms, Tools –	
(JDK, SDK, Eclipse/Android Studio, ADT, AVD, Android Emulator),	
Versions, Creating your first Android Application	
Unit II Activities, Fragments and Intents	
Introduction to Activities, Activity Lifecycle, Introduction to Intents, Linking	
Activities using Intents, Calling built-in applications using Intents,	
Introduction to Fragments, Adding Fragments Dynamically, Lifecycle of	
Fragment, Toast	
Unit III Android User Interface	
Understanding the components of a screen: Views and View Groups, Linear	
Layout, Absolute Layout, Table Layout, Relative Layout, Frame Layout,	
Scroll Layout, Scroll View, Constraint Layout, Adapting to Display	

Orientation: Anchoring Views, Resizing and Repositioning Split Screen /	
Multi-Screen Activities	
Unit IV Android Application Structure	10 Hrs
Android basic building blocks: Services, Broadcast Receivers & Content	
providers, UI Components -view and notifications, Components for	
communication - Android API levels (versions & version names)	
AndroidManifest.xml, Uses-permission, Dalvik Virtual Machine & .apk file	
extension, Resources & R.java, Assets, Drawable Resources, First sample	
Application.	
Unit V Designing Your User Interface with Views	12 Hrs
Using Basic Views: TextView, Button, ImageButton, EditText, CheckBox,	
Switch, ToggleButton, RadioButton, and RadioGroup Views, ProgressBar	
View, AutoCompleteTextView View Using Picker Views:,TimePicker View	
and DatePicker View Using List Views to Display Long Lists:,ListView View,	
Using the Spinner View Understanding Specialized Fragments: Using a	
ListFragment,Using a DialogFragment Displaying Pictures and Menus: Using	
Image Views to Display Pictures, Gallery and ImageView views, Image	
Switcher, Grid View, Using Menus with Views, Creating the helper methods,	
Options Menu, Context Menu, VideoView: Play video from URL with using	
VideoView, VideoView Create, Optimized VideoView, Optimized	
VideoView in ListView	
Unit VI SQLite , Messaging and Email	09 Hrs
Introduction to SQLite, SQLite Open Helper and SQLite Database Creating,	
opening and closing database, working with cursors, Insert, Update, Delete	
Building and executing queries, SMS Messaging: Sending SMS Messages	
Programmatically, Getting Feedback after Sending a Message, Sending SMS	
Messages Using Intent, Receiving SMS Messages, Caveats and Warnings,	
Sending E-mail	
Deference Rooks	

Reference Books:

- 1) Beginning Android4 Application Development, By Wei-Meng Lee WILEY India Edition WROX Publication
- 2) Professional Android 4 Application Development, By Reto Meier WROX Publication
- 3) Head First Android Development: A Brain-Friendly Guide, By David Griffiths and Dawn

Griffiths

Websites:

- 1) The official site for Android developers https://developer.android.com
- 2) https://www.tutorialspoint.com/android/index.htm
- 3) https://www.javatpoint.com/android-tutorial

T.Y. B.C.A. SEMESTER VI		
Subject Code: BCA36102	Subject Name: Advanced Web Technology	
Credits: 02	Continuous Internal Assessment: 20 Marks	
Theory: 02 Hrs./Week	College Semester Examination: 30 Marks	

- To Learn different technologies used at client Side Scripting Language
- To Learn XML and XML parsers.
- To One PHP framework for effective design of web application.
- To Learn Java Script to program the behavior of web pages.
- To Learn AJAX to make our application more dynamic.

Course Outcomes:

- Build dynamic website.
- Using MVC based framework easy to design and handling the errors in dynamic website

Course Contents	
Introduction to PHP	03 Hrs
Introduction to php, How to install PHP Server on LINUX, WINDOWS, Syntax,	
Echo, print, Variables, Data Types, Strings, Operators, Loops.	
PHP Functions and Arrays	06 Hrs
Introduction to Functions (Defining and Calling Functions, Default parameters,	
Variable parameters, Missing parameters), Types of PHP Functions (Anonymous	
Function, Variable Function). Indexed Vs Associative arrays, Identifying elements	
of an array, Storing data in arrays, Multidimensional arrays, Extracting multiple	
values, Converting between arrays and variables	
Introduction to Object Oriented Programming in PHP & Web Techniques	05 Hrs
Classes, Objects, Encapsulation, Constructor and Destructor, Inheritance,	
Interfaces, Introspection, Super global Variables, Server information, Sticky	
forms, File Uploads, Setting response headers, Maintaining state, Session and	
Cookies	
Files and Directories & DataBase	07 Hrs
Working with files and directories, Opening and Closing, Getting information	
about file, Reading and writing characters in file, Rename and delete files,	

NT 1	E.P:	20	25	20	126
	r,	- 21	145.	- ZU	/40

SOAP, WSDL, Application of web services	
Introduction to Web Services	02 Hrs
php and AJAX, Connecting database using php and AJAX	
AJAX –PHP framework, Performing AJAX validation, Handling XML data using	
simple XML, Understanding java scripts for AJAX, AJAX web application model,	
document object model, The simple XML extension, Changing a value with	
What is XML? ,XML document Structure, PHP and XML, XML parser, The	
XML & Ajax	07 Hrs
Advanced database techniques, Simple applications	
Relational databases and SQL, Introduction to PEAR DB basics (No assignments),	
permissions, Using PHP to access/insert/update/delete a database tables,	
Random access to file data, Getting information on file, Ownership and	

Reference Books:

- 1. Complete HTML- Thomas Powell
- 2. HTML and JavaScript-Ivan Bayross
- 3. Programming PHP By Rasmus Lerdorfand Kevin Tatroe, O'Reilly publication
- 4. Beginning PHP
- 5, Wrox publication 5. PHP for Beginners, SPD publication

e-Books:

- 1. https://www.w3schools.com
- 2. https://wwwtutorialspoint.com
- 3. https://www.php.net
- 4. Thinking in HTML eBook by Aravind Shenoy
- 5. Learn HTML and CSS faster by Mark Myers

T.Y. B.C.A. SEMESTER VI

Subject Code: BCA36103 Subject Name: Android Programming Laboratory

Credits: 02 Continuous Internal Assessment: 20 Marks

Practical: 04 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

• To understand the Android Operating System

To study Android Apps Development Cycle

To learn to create Android Applications

Course Outcomes:

- Describe the process of developing mobile applications.
- Create mobile applications on the Android Platform.
- Design and implement mobile applications involving data storage in SQLite database.
- Use location-based services while developing applications

Lab Course Contents		
Sr. No	Assignment	
1	Introduction to Android	
2	Activities, Fragments and Intents	
3	Android User Interface	
4	Designing User Interface with Views	
5	Databases-SQLite, Messaging and E-mail	

N.E.P: 2025-2026

T.Y. B.C.A. SEMESTER VI

Subject Code: BCA36104 Subject Name: Advanced Web Technology

Laboratory

Credits: 02 Continuous Internal Assessment: 20 Marks

Practical: 04 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

• To Design dynamic and interactive Web pages.

• To Learn Core-PHP, Server Side Scripting Language

To Learn PHP- Database handling

• To apply statistical, data preprocessing and visualization techniques on data sets

Course Outcomes:

On completion of the course, student will be able to-

- Understand how to develop dynamic and interactive Web Page
- Prepare data for use with a variety of statistical methods and recognize how the quality of the data may affect conclusions.
- Perform exploratory data analysis

Lab Course Contents

Sr. No	Lab Assignment
1	Assignment on PHP
2	Assignment on PHP Functions and Arrays
3	Assignment on PHP File Upload and Download
4	Assignment on PHP File Access and Database Handling
5	Assignment on XML
6	Assignment on Ajax

T.Y. B.C.A. SEMESTER VI

Subject Code: BCA36105 Subject Name: Node JS

Credits: 02 Continuous Internal Assessment: 20 Marks

Theory: 02 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

• To Learn different web models in Node Js

- To Learn web server creation.
- To Learn Debugging of Node Js app.
- To Learn Express Js and static resources.

Course Outcomes:

On completion of the course, student will be able to-

- Describe the process of developing Node Js application.
- Create Node Js Modules.
- Design and implement web Server.
- Use Express Js and Static Resources.

Course Contents

0000000	
Unit I Introduction to Node JS	05 Hrs
Introduction to Node JS, What is Node JS, Node.js Process Model, Advantages of Node JS, Traditional Web Server Model, Setup Development Environment, Install Node.js on Windows, Working in REPL, Node JS Console	
Unit II Node JS Modules	05 Hrs
Functions, Buffer, Module , Core Modules, Local Modules, Modules Types, Modules Exports ,Node Package Manager, What is NPM, Installing Packages Locally, Adding dependency in package json ,Installing package globally , Updating packages Session	
Unit III Creating Web Server	05 Hrs
Creating Web Server, Handling http requests, Sending Requests, File System, Fs.readFile, Writing a File, Writing a file asynchronously, Opening a file, Deleting a file, Other IO Operations	
Unit IV Debugging Node JS Application	05 Hrs
Debugging Node JS Application, Core Node JS Debugger ,Events, Event Emitter class, Returning event emitter, Inheriting Events	
Unit V Express JS	05 Hrs
Express JS, Configuring Routes, Working with Express	
Unit VI Serving Static Resources	05 Hrs
Serving Static Files, Working with Middle Ware, Database Connectivity, Connecting String, Configuring, Working with Select Command, Updating Records, Deleting Records	

Reference Books:

- 1. Node.js Design Patterns Third edition. ...
- 2.Beginning Node.js, Express & MongoDB Development. ...
- 3.Distributed Systems with Node. ...
- 4.Ultimate Node.js for Cross-Platform App Development: Learn to Build Robust, Scalable, and Performant Server-Side JavaScript Applications with Node.js. ...
- 5. Node. js Cookbook Fifth Edition. ...
- 6.Mastering Node.

Websites:

- 1 GUI
- 2 nodejs.org
- 3 Codecademy
- 4 freeCodeCamp
- 5 The Odin Project
- 6 MDN Web Docs
- 7 Udemy
- 8 Coursera
- 9 Frontend Masters
- 10 egghead.io

T.Y. B.C.A. SEMESTER VI

Subject Code: BCA36106 Subject Name: Node JS Laboratory

Credits: 02 Continuous Internal Assessment: 20 Marks

Practical: 04 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

• To Design Node Js Pages.

• To Learn Core-Node Js

• To Learn File handling

To apply Express Js on Database Handling

Course Outcomes:

On completion of the course, student will be able to-

- Understand how to develop dynamic and interactive Web Page
- Prepare Pages for handling files.
- Perform use of Express Js for Database handling

Sr. No Assignment

Sr. No	Assignment
1	Practical on Setup Development Environment
2	Use of Function, Modules and Packages
3	Handling Files
4	Use of Express Js
5	Database Handling

N.E.P: 2025-2026 T.Y. B.C.A. (Science)

T.Y. B.C.A. SEMESTER VI

Subject Code: BCA36107 Subject Name: Software Testing

Credits: 02 Continuous Internal Assessment: 20 Marks

Theory: 02 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

• To provide the knowledge of software testing techniques

- To understand how testing methods can be used as an effective tools in quality assurance of software.
- To provide skills to design test case plan for testing software.
- To provide knowledge of latest testing methods

Course Outcomes:

- To understand various software testing methods and strategies.
- To understand a variety of software metrics, and identify defects and managing those defects for improvement in quality for given software.
- To design test cases and test plans, review reports of testing for qualitative software.
- To understand latest testing methods used in the software industries

Course Contents

Unit I Introduction to Software Testing

Basics of Software -Testing faults, errors and failures, Testing objectives
Principles of testing, Testing and debugging Testing metrics and measurements
Verification and Validation Testing Life Cycle

Unit II Types of Testing

Testability - Characteristics lead to testable software. Test characteristics Test Case

Design for Desktop, Mobile, Web application using Excel White Box Testing - Basis

path testing, Control Structure Testing. Black Box Testing- Boundary Value Analysis,

Equivalence partitioning. Differences between BBT & WBT

08 Hrs

05 Hrs

Unit III Testing Strategies

A Strategic Approach to Software Testing Test strategies for conventional Software Unit testing Integration testing – Top-Down, Bottom-up integration System Testing – Acceptance, performance, regression, Load/Stress testing, Security testing, Internationalization testing. Alpha, Beta Testing Usability and accessibility testing Configuration, compatibility testing

08 Hrs

Unit IV Dimension of Quality

N.E.P:	2025-	2026
--------	-------	------

Dimension of Quality, Error within a WebApp Environment Testing Strategy for	04 Hrs
WebApp Test Planning The Testing Process –an overview	
Unit VAgile Testing	
Agile Testing, Difference between Traditional and Agile testing, Agile principles	05 Hrs
and values, Agile Testing Quadrants, Automated Tests	
Reference Books: 1. Software Engineering – A Practitioners Approach, Roger S.	
Pressman, 7 thEdition, Tata McGraw Hill, 20	
2. Effective Methods of Software Testing, William E Perry, 3rd Edition, Wiley	
Publishing Inc	
3. Managing the Testing Process: Practical Tools and Techniques for Managing	
Hardware and Software Testing, Rex Black, Microsoft Press, 1999	
4. Agile Testing: A Practical Guide for Testers and Agile Teams, Lisa Crispin and	
Janet Gregory, 1 st Edition, Addison-Wesley Professional, 2008	
5. Software Testing Principles and Practices By Srinivasan Desikan, Gopalaswamy	

T.Y. B.C.A. SEMESTER VI				
Subject Code: BCA36108	Subject Name: Software Testing Laboratory			
Credits: 02	Continuous Internal Assessment: 20 Marks			
Practical: 04 Hrs./Week	College Semester Examination: 30 Marks			

• To have hands on experience in developing a software project by using various software engineering principles and methods in each of the phases of software development.

Course Outcomes:

On completion of the course, student will be able to-

- Ability to test software using Test Cases.
- Ability to generate test methodology.
- Will have experience and/or awareness of testing problems and will be able to develop test cases on Selenium.

Guideline:

• Students have to do all assignments on the basis of project.

Lab Course Contents				
Sr. No	Assignment			
1	Project Module			
2	Assignments on Test Cases.			
3	Assignments on Test Plan and Test Strategies			
4	Assignments of Test Methodologies			
5	Assignments on Manual Testing.			
6	Assignments on Automation Testing using Selenium.			

T.Y. B.C.A. SEMESTER VI					
Subject Code: BCA36209	Subject Name: Cloud Computing				
Credits: 02	Continuous Internal Assessment: 20 Marks				
Theory: 02 Hrs./Week	College Semester Examination: 30 Marks				

- .To study cloud computing concepts, technologies, architecture and applications.
- To understand issues in application deployment and implementations in cloud environment.
- To learn recent trends in cloud computing.

Course Outcomes:

- Explain the core issues in cloud computing such as security, privacy, and interoperability.
- Choose the appropriate technologies, algorithms, and approaches for the given application.
- Compare and contrast various cloud services

Course Contents		
Unit I Introduction to Cloud Computing	03 Hrs	
Overview, Layers and Types of Cloud, Desired Features of a Cloud, Benefits and		
Disadvantages of Cloud Computing, Cloud Infrastructure Management,		
Infrastructure as a Service		
Unit II Abstraction and Virtualization	06 Hrs	
Using Virtualization Technology, Load Balancing and Virtualization – The		
Google Cloud, Understating Hypervisors – Virtual Machine types, Exploring		
SaaS – salesforce.com, Exploring PaaS- force.com, Exploring IaaS – Amazon		
EC2		
Unit III Programming Environment	06 Hrs	
Features of Cloud and Grid Platforms, Programming Support of Google App		
Engine, Programming on Amazon AWS, Microsoft Azure, Emerging Cloud		
Software Environments.		

Unit IV Deploying Applications and cloud services	05 Hrs
Moving application to cloud, Microsoft Cloud Services, Google Cloud	
Applications, Amazon Cloud Services, Cloud Applications	
Unit V Emerging trends in cloud computing	05 Hrs
Multi-Cloud Vs Omni-Cloud, Integrated Blockchain technology, Kubernetes,	
Cloud AI, Intelligent SaaS, Kubernetes Supremacy, Containerization by Industry	
Giants	
Unit IV Security In The Cloud	05 Hrs
Security Overview, Cloud Security Challenges and Risks, Software-as-a-Service	
$Security, Security\ Governance,\ Risk\ Management-Security\ Monitoring,\ Security$	
Architecture Design	
Reference Books:	
1) Cloud Computing: Principles and Paradigms, Editors, RajkumarBuyya, James	
Broberg, Andrzej M. Goscinski, Wiley,2011.	
2) Enterprise Cloud Computing - Technology, Architecture, Applications, Gautam Shroff, Cambridge University Press, 2010.	
3) Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010.	
4) Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, Wiley- India, 2010.	
5) Cloud Computing: Technologies and Strategies of the Ubiquitous Data Center, Brian J. S. Chee and Curtis Franklin.	
5) AWS, The ultimate guide from beginners to advanced, Maveric Koston.	
6) Microsoft Azure: Planning, Deploying, and Managing Your Data Center in the Cloud, Anthony Puca, Mike Manning, Marshal Copeland, Julian Soh, David	

N.E.P: 2025-2026 T.Y. B.C.A. (Science)

T.Y. B.C.A. SEMESTER VI				
Subject Code: BCA36211 Subject Name: Cloud Computing Laboratory				
Credits: 02	Continuous Internal Assessment: 20 Marks			
Practical: 04 Hrs./Week	College Semester Examination: 30 Marks			

Course Objectives:

- . To study cloud computing concepts, technologies, architecture and applications.
- To understand issues in application deployment and implementations in cloud
- environment. ·
- To learn recent trends in cloud computing.

Course Outcomes:

- Explain the core issues in cloud computing such as security, privacy, and interoperability.
- Choose the appropriate technologies, algorithms, and approaches for the given
- application.
- Compare and contrast various cloud services.

Lah Cannaga Contanta						
	Lab Course Contents					
Sr. No	Assignment					
1	Launching EC2 Instance(windows)- AWS Platform					
2	Launching EC2 Instance (Linux)- AWS Platform					
3	Create an EC2 Linux Instance and Install an Apache Web Server and run hello World page (Use AWS Platform)					
4	Practical Implementation of Storage as a Service Create an S3 Bucket, Upload a file to S3 Bucket, Retrieve a File from S3 Bucket, and Delete a File from S3 Bucket using AWS.					
5	Implementation of Storage as a Service Hosting a static website in AWS using S3					
6	Working and Implementation of identity management					
7	Using EC2 Service install Red-hat Linux instance and install python and run python program.					

η	Г 7	<i>7</i> 1	R (\mathbf{C}	\ (CEL	TEC	TER	T/T
				<i>F</i>		3 P. IV			· •

Subject Code: BCA36212 Subject Name: Machine Learning

Credits: 02 Continuous Internal Assessment: 20 Marks

Theory: 02 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

- Introduce fundamental concepts of machine learning and its applications.
- Understand various types of learning and model evaluation techniques.
- Explore popular machine learning algorithms and their real-world applications.

Course Outcomes:

- Understand fundamental concepts, methods, and applications of machine learning.
- Apply machine learning techniques to solve real-world problems.
- Evaluate models and analyze their performance.
- Understand ethical considerations and challenges in implementing machine learning systems.

Course Contents		
Unit 1: Introduction to Machine Learning	06 Hrs	
Definition, Importance, and Applications of Machine Learning, Types of Machine Learning: Supervised, Unsupervised, Semi-supervised, Reinforcement Learning, Basic Terminologies: Dataset, Features, Labels, Training, Testing, Steps in the Machine Learning Pipeline		
Unit II: Supervised Learning	08 Hrs	
Regression: Linear Regression, Logistic Regression, Classification: Decision Trees, Support Vector Machines (SVM), Overfitting and Underfitting, Model Evaluation Metrics: Accuracy, Precision, Recall, F1-Score, ROC Curve		
Unit III: Unsupervised Learning	06 Hrs	
Clustering: K-Means, Hierarchical Clustering, Dimensionality Reduction: Principal Component Analysis (PCA), Applications of Unsupervised Learning		
Unit IV : Reinforcement Learning	05 Hrs	
Concepts of Agents, Environment, Rewards, and Policy, Q-Learning and Deep Q-Learning Basics, Real-World Applications		
Unit V: Tools and Applications	05 Hrs	
Introduction to Machine Learning Libraries: scikit-learn, TensorFlow, PyTorch,		
Case Studies: Spam Filtering, Recommendation Systems, Image Recognition,		
Ethical Considerations and Challenges in Machine Learning		
Reference Books:		
1.Introduction to Machine Learning by Abhishek Gupta		
2.Machine Learning: Fundamentals and Applications by P. Ranjan and B. Joshi		

- 3.Machine Learning"by Saikat Dutt, Subramanian Chandramouli, and Amit Kumar Das
- 4. Machine Learning and Big Databy Rajiv Chopra
- 5.Data Mining and Machine Learning by V. K. Jain
- 6. Machine Learning" by Tom M. Mitchell
- 7. Pattern Recognition and Machine Learning" by Christopher M. Bishop
- 8. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron

T.Y. B.C.A. SEMESTER VI

Subject Code: BCA36213 Subject Name: Machine Learning Laboratory

Credits: 02 Continuous Internal Assessment: 20 Marks

Practical: 04 Hrs./Week College Semester Examination: 30 Marks

Course Objectives:

• Introduce fundamental concepts of machine learning Tools.

- Understand various types of learning and model evaluation techniques using different tools and techniques.
- Explore popular machine learning algorithms and their real-world applications using case study.

Course Outcomes:

- Understand fundamental machine learning Tools.
- Apply machine learning techniques to solve real-world problems.
- Evaluate models and analyze their performance.
- Understand learning types with case study.

Lab Course Contents		
Sr. No	Assignment	
1	Getting Started with Machine Learning Tools	
2	Data Preprocessing	
3	Supervised Learning - Regression , Classification	
4	Unsupervised Learning -Clustering Techniques, Dimensionality Reduction	
5	Reinforcement Learning	
6	Case Study and Model Deployment	